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Solución

Pregunta 1. Dado p > 0, sea
{
an
}∞
n=1

la sucesión cuyos elementos

satisfacen la fórmula de recurrencia

an+1 =
1

2

(
an +

p

an

)
con a1 cualquier número real positivo.

i. (2 ptos.) Suponiendo que la sucesión es convergente, halle el

valor del ĺımite L = ĺım
n→∞

an

ii. (3 ptos.) Demuestre que la sucesión
{
an+1

}∞
n=1

es convergente.

Solución: Suponiendo que la sucesión converge a L, y notando

que L = ĺım
n→∞

an = ĺım
n→∞

an+1, se tiene

L = ĺım
n→∞

an+1 = ĺım
n→∞

1

2

(
an +

p

an

)

=
1

2

(
ĺım
n→∞

an +
p

ĺım
n→∞

an

)
=

1

2

(
L+

p

L

)
Luego,

L =
1

2

(
L+

p

L

)
=⇒ L2 = p =⇒ L =

√
p

descartamos el caso L = −√
p pues an+1 es positivo siempre que

an también lo sea y como a1 > 0 entonces todos los an son positivos.

Por otra parte, como

an+1 − an+2 = an+1 −
1

2

(
an+1 +

p

an+1

)



=
1

2

(
(an+1)

2 − p

an+1

)

=
1

2

(
an+1 +

√
p

an+1

)(
an+1 −

√
p
)

=
1

2

(
an+1 +

√
p

an+1

)(
1

2

(
an +

p

an

)
−√

p

)

=
1

2

(
an+1 +

√
p

an+1

)(
(an)

2 + p− 2an
√
p

2an

)

=
1

2

(
an+1 +

√
p

an+1

)((
an −

√
p
)2

2an

)

=
1

4

(
an+1 +

√
p

(an+1)(an)

)
︸ ︷︷ ︸

>0

(
an −

√
p
)2︸ ︷︷ ︸

≥0

≥ 0

para todo n ∈ N, la sucesión
{
an+1

}∞
n=1

es monótona decreciente.

Entonces,

0 < an+1 ≤ a2 =
1

2

(
a1 +

p

a1

)
para todo n ∈ N, por lo que la sucesión

{
an+1

}∞
n=1

es acotada. Aśı,

la sucesión
{
an+1

}∞
n=1

es convergente por ser monótona y acotada.

Pregunta 2. (4 ptos. c/u) Determine, para cada una de las si-

guientes series, si converge o diverge:

i.
∞∑
n=1

4n2 − n+ 3

n3 + 2n

ii.
∞∑
n=1

n+
√
n

2n3 − 1

iii.
∞∑
n=1

ln(n)

n2 + 3

iv.
∞∑
n=1

earctan(n)

n2 + 1



Solución: Para las series en (i) (ii) y (iii) estudiaremos la conver-

gencia empleando el Criterio de Comparación del Ĺımite, mientras

que para la serie en (iv) usaremos el Criterio de la Integral.

i. Dado que
4n2 − n+ 3

n3 + 2n
> 0 y

1

n
> 0 para todo n ≥ 1, y

ĺım
n→∞

4n2 − n+ 3

n3 + 2n
1

n

= ĺım
n→∞

4− 1

n
+

3

n2

1 +
2

n2

= 4 > 0

como
∞∑
n=1

1

n
diverge (pues es la serie armónica) entonces la

serie
∞∑
n=1

4n2 − n+ 3

n3 + 2n
también diverge.

ii. Dado que
n+

√
n

2n3 − 1
> 0 y

1

n2
> 0 para todo n ≥ 1, y

ĺım
n→∞

n+
√
n

2n3 − 1
1

n2

= ĺım
n→∞

1 +
1√
n

2− 1

n

=
1

2
> 0

como
∞∑
n=1

1

n2
converge (pues es la serie p con p = 2 > 1)

entonces la serie
∞∑
n=1

n+
√
n

2n3 − 1
también converge.

iii. Dado que
ln(n)

n2 + 3
> 0 y

1

n
3
/
2
> 0 para todo n ≥ 2, y

0 ≤ ĺım
n→∞

ln(n)

n2 + 3
1

n
3
/
2

= ĺım
n→∞

n
3
/
2 ln(n)

n2 + 3
≤ ĺım

n→∞

n
3
/
2 ln(n)

n2



= ĺım
n→∞

ln(n)√
n

L’H
↓
= ĺım

n→∞

1

n
1

2
√
n

= ĺım
n→∞

2√
n
= 0

como
∞∑
n=1

1

n
3
/
2

converge (pues es la serie p con p = 3
2
> 1)

entonces la serie
∞∑
n=1

ln(n)

n2 + 3
también converge.

iv. Dado que la función f(x) =
earctan(x)

x2 + 1
cumple con lo siguiente:

f es continua y positiva sobre el intervalo [1,∞)

f(n) = an para todo n ∈ N

f es decreciente en [1,∞) pues f ′(x)=
earctan(x)

(x2 + 1)2︸ ︷︷ ︸
>0

(1− 2x)︸ ︷︷ ︸
<0

(si x>1/2)

< 0

y como

∫ ∞

1

f(x) dx converge, ya que

ĺım
b→∞

∫ b

1

earctan(x)

x2 + 1
dx = ĺım

b→∞
earctan(b) − earctan(1) = e

π
/
2 − e

π
/
4,

entonces la serie
∞∑
n=1

earctan(n)

n2 + 1
también converge.

Pregunta 3. (5 ptos.) Halle el intervalo de convergencia de la

serie de pontencias
∞∑
n=1

(−1)n (x− 1)n

2n (3n− 1)

Solución: Denotando por an al n-ésimo término de la serie, se

tiene que

ĺım
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ĺım
n→∞

∣∣∣∣∣ 2n (3n− 1)

(−1)n (x− 1)n
(−1)n+1 (x− 1)n+1

2n+1 (3(n+ 1)− 1)

∣∣∣∣∣



= ĺım
n→∞

∣∣∣∣∣(3n− 1)(x− 1)

2(3n+ 2)

∣∣∣∣∣ = 1

2

(
ĺım
n→∞

3− 1/n
3 + 2/n

)
|x−1| = |x− 1|

2

de donde se desprende que la serie converge para todo x ∈ (−1, 3)

ya que

|x− 1|
2

< 1 ⇐⇒ |x− 1| < 2 ⇐⇒ −1 < x < 3

Si x = −1, la serie es

∞∑
n=1

(−1)n (−2)n

2n (3n− 1)
=

∞∑
n=1

(−1)2n 2n

2n (3n− 1)
=

∞∑
n=1

1

3n− 1
=

1

2
+
1

5
+
1

8
+· · ·

la cual diverge pues es de términos positivos y al hacer la

comparación del ĺımite con la serie armónica se tiene

ĺım
n→∞

1

3n− 1
1

n

= ĺım
n→∞

1

3− 1

n

=
1

3
> 0

Si x = 3, la serie es

∞∑
n=1

(−1)n (2)n

2n (3n− 1)
=

∞∑
n=1

(−1)n

3n− 1
= −1

2
+

1

5
− 1

8
+

1

11
− 1

14
+ · · ·

la cual converge pues es una serie alternante
∞∑
n=1

(−1)nan con

an > an+1 > 0 para todo n ∈ N y ĺım
n→∞

an = 0.

Por lo tanto, el intervalo de convergencia de la serie de potencias

dada es (−1, 3].

Pregunta 4. (4 ptos.) Represente la serie de Maclaurin, para

x ∈ (−1, 1), de la función

arcsen(x) =

∫ x

0

dt√
1− t2



Solución: Como −t2 ∈ (−1, 1) siempre que t ∈ (−1, 1), usando

la fórmula para la serie binomial, se tiene que

1√
1− t2

=
(
1 +

(
− t2

))−1
/
2

= 1 +
∞∑
n=1

(−1/2
n

)(
− t2

)n
= 1 +

∞∑
n=1

(−1)n
(−1/2

n

)
t2n

= 1 +
∞∑
n=1

(2n)!

22n (n!)2
t2n

ya que

(−1/2
0

)
= 1, y para n ≥ 1 se tiene(−1/2

n

)
=

(−1
2

)(−1
2
− 1
)(−1

2
− 2
)
· · ·
(−1

2
− (n− 1)

)
n!

= (−1)n
(
1
2

)(
1
2
+ 1
)(

1
2
+ 2
)
· · ·
(
1
2
+ (n− 1)

)
n!

= (−1)n
(1)(1 + 2)(1 + 4) · · ·

(
1 + 2(n− 1)

)
2n n!

= (−1)n
(1)(3)(5) · · ·

(
2n− 1)

2n n!

= (−1)n
(1)(2)(3)(4)(5)(6) · · ·

(
2n− 1)(2n)

2n(1)(2)(3) · · · (n)︸ ︷︷ ︸
=(2)(4)(6)···(2n)

2n n!

= (−1)n
(2n)!

22n (n!)2

Luego, integrando término a término,

arcsen(x) =

∫ x

0

dt√
1− t2

=

∫ x

0

(
1 +

∞∑
n=1

(2n)!

22n (n!)2
t2n

)
dx

=
∞∑
n=0

(2n)!

22n (n!)2 (2n+ 1)
x2n+1

para todo x ∈ (−1, 1).


